Project 4: Designing selective sorbents for water remediation

2023
Obinna Nwokonkwo, Vivienne Pelletier, Michael Broud, and Christopher Muhich. 9/8/2023. “Functionalized Ferrocene Enables Selective Electrosorption of Arsenic Oxyanions over Phosphate─A DFT Examination of the Effects of Substitutional Moieties, pH, and Oxidation State.” The Journal of Physical Chemistry A, Pp. null. Publisher's Version
Srishti Gupta, Adam Chismar, and Christopher Muhich. 3/30/2023. “Understanding the Effect of Single Atom Cationic Defect Sites in an Al2O3 (012) Surface on Altering Selenate and Sulfate Adsorption: An Ab Initio Study.” J. Phys. Chem. C, 127, 14, Pp. 6925-6937. Publisher's VersionAbstract
Adsorption is a promising under-the-sink selenate remediation technique for distributed water systems. Recently it was shown that adsorption induced water network rearrangement control adsorption energetics on the α-Al2O3 (012) surface. Here, we aim to elucidate the relative importance of the water network effects and surface cation identity on controlling selenate and sulfate adsorption energy using density functional theory calculations. Density functional theory (DFT) calculations predicted the adsorption energies of selenate and sulfate on nine transition metal cations (Sc–Cu) and two alkali metal cations (Ga and In) in the α-Al2O3 (012) surface under simulated acidic and neutral pH conditions. We find that the water network effects had a larger impact on the adsorption energy than the cationic identity. However, cation identity secondarily controlled adsorption. Most cations decreased the adsorption energy, weakening the overall performance, the larger Sc and In cations enabled inner-sphere adsorption in acidic conditions because they relaxed outward from the surface, providing more space for adsorption. Additionally, only Ti induced Se selectivity over S by reducing the adsorbing selenate to selenite but not reducing the sulfate. Overall, this study indicates that tuning water network structure will likely have a larger impact than tuning cation–selenate interactions for increasing adsorbate effectiveness.
Holly E Rudel and Julie B Zimmerman. 2023. “Elucidating the Role of Capping Agents in Facet-Dependent Adsorption Performance of Hematite Nanostructures.” ACS Appl Mater Interfaces, 15, 29, Pp. 34829-34837.Abstract

Organic capping agents are a ubiquitous and crucial part of preparing reproducible and homogeneous batches of nanomaterials, particularly nanocrystals with well-defined facets. Despite studies reporting surface ligands (e.g., capping agents) having a non-negligible role in catalytic behavior, their impact is less understood in contaminant adsorption, an important consideration given their potential to obfuscate facet-dependent trends in performance. To ascribe observed behaviors to the facet or the ligand, this report evaluates the impact of poly(-vinyl-2-pyrrolidone) (PVP), a commonly utilized capping agent, on the adsorption performance of nanohematite particles of varying prevailing facet in the removal of selenite (Se(IV)) as a model system. The PVP capping agent reduces the available surface area for contaminant binding, thus resulting in a reduction in overall Se(IV) adsorbed. However, accounting for the effects of surface area, {012}-faceted nanohematite demonstrates a significantly higher sorption capacity for Se(IV) compared with that of {001}-faceted nanohematite. Notably, chemical treatment is minimally effective in removing strongly bound PVP, indicating that complete removal of surface ligands remains challenging.

Alireza Farsad, Ken Niimi, Mahmut Selim Ersan, Jose Ricardo Gonzalez-Rodriguez, Kiril D Hristovski, and Paul Westerhoff. 2023. “Mechanistic Study of Arsenate Adsorption onto Different Amorphous Grades of Titanium (Hydr)Oxides Impregnated into a Point-of-Use Activated Carbon Block.” ACS ES&T EngineeringACS ES&T Engineering, 3, 7, Pp. 989 - 1000. Publisher's VersionAbstract
Millions of households still rely on drinking water from private wells or municipal systems with arsenic levels approaching or exceeding regulatory limits. Arsenic is a potent carcinogen, and there is no safe level of it in drinking water. Point-of-use (POU) treatment systems are a promising option to mitigate arsenic exposure. However, the most commonly used POU technology, an activated carbon block filter, is ineffective at removing arsenic. Our study aimed to explore the potential of impregnating carbon blocks with amorphous titanium (hydr)oxide (THO) to improve arsenic removal without introducing titanium (Ti) into the treated water. Four synthesis methods achieved 8–16 wt % Ti-loading within the carbon block with a 58–97% amorphous THO content. The THO-modified carbon block could adsorb both oxidation states of arsenic (arsenate and arsenite) in batch or column tests. Modified carbon block with higher Ti and amorphous content always led to better arsenate removal, achieving arsenic loadings up to 31 mg As/mg Ti after 70,000 bed volumes in continuous-flow tests. Impregnating carbon block with amorphous THO consistently outperformed impregnation using crystalline TiO2. The best-performing system (TTIP-EtOH carbon block) was an amorphous THO derived using titanium isopropoxide, ethanol, and acetic acid via the sol–gel technique, aged at 80 °C for 18 h and dried overnight at 60 °C. Comparable pore-size distribution and surface area of the impregnated carbon blocks suggested that chemical properties play a more crucial role than physical and textural properties in removing arsenate via the amorphous Ti-impregnated carbon block. Freundlich isotherms indicated energetically favorable adsorption for amorphous chemically synthesized adsorbents. The mass transport coefficients for the amorphous TTIP-EtOH carbon block were fitted using a pore-surface diffusion model, resulting in Dsurface = 3.1 × 10–12 and Dpore = 3.2 × 10–6 cm2/s. Impregnating the carbon block with THO enabled effective arsenic removal from water without adversely affecting the pressure drop across the unit or the carbon block’s ability to remove polar organic chemical pollutants efficiently.Millions of households still rely on drinking water from private wells or municipal systems with arsenic levels approaching or exceeding regulatory limits. Arsenic is a potent carcinogen, and there is no safe level of it in drinking water. Point-of-use (POU) treatment systems are a promising option to mitigate arsenic exposure. However, the most commonly used POU technology, an activated carbon block filter, is ineffective at removing arsenic. Our study aimed to explore the potential of impregnating carbon blocks with amorphous titanium (hydr)oxide (THO) to improve arsenic removal without introducing titanium (Ti) into the treated water. Four synthesis methods achieved 8–16 wt % Ti-loading within the carbon block with a 58–97% amorphous THO content. The THO-modified carbon block could adsorb both oxidation states of arsenic (arsenate and arsenite) in batch or column tests. Modified carbon block with higher Ti and amorphous content always led to better arsenate removal, achieving arsenic loadings up to 31 mg As/mg Ti after 70,000 bed volumes in continuous-flow tests. Impregnating carbon block with amorphous THO consistently outperformed impregnation using crystalline TiO2. The best-performing system (TTIP-EtOH carbon block) was an amorphous THO derived using titanium isopropoxide, ethanol, and acetic acid via the sol–gel technique, aged at 80 °C for 18 h and dried overnight at 60 °C. Comparable pore-size distribution and surface area of the impregnated carbon blocks suggested that chemical properties play a more crucial role than physical and textural properties in removing arsenate via the amorphous Ti-impregnated carbon block. Freundlich isotherms indicated energetically favorable adsorption for amorphous chemically synthesized adsorbents. The mass transport coefficients for the amorphous TTIP-EtOH carbon block were fitted using a pore-surface diffusion model, resulting in Dsurface = 3.1 × 10–12 and Dpore = 3.2 × 10–6 cm2/s. Impregnating the carbon block with THO enabled effective arsenic removal from water without adversely affecting the pressure drop across the unit or the carbon block’s ability to remove polar organic chemical pollutants efficiently.
Elliot Reid, Thomas Igou, Yangying Zhao, John Crittenden, Ching-Hua Huang, Paul Westerhoff, Bruce Rittmann, Jörg E Drewes, and Yongsheng Chen. 2023. “The Minus Approach Can Redefine the Standard of Practice of Drinking Water Treatment.” Environ Sci Technol, 57, 18, Pp. 7150-7161.Abstract

Chlorine-based disinfection for drinking water treatment (DWT) was one of the 20th century's great public health achievements, as it substantially reduced the risk of acute microbial waterborne disease. However, today's chlorinated drinking water is not unambiguously safe; trace levels of regulated and unregulated disinfection byproducts (DBPs), and other known, unknown, and emerging contaminants (KUECs), present chronic risks that make them essential removal targets. Because conventional chemical-based DWT processes do little to remove DBPs or KUECs, alternative approaches are needed to minimize risks by removing DBP precursors and KUECs that are ubiquitous in water supplies. We present the "Minus Approach" as a toolbox of practices and technologies to mitigate KUECs and DBPs without compromising microbiological safety. The Minus Approach reduces problem-causing chemical addition treatment (i.e., the conventional "Plus Approach") by producing biologically stable water containing pathogens at levels having negligible human health risk and substantially lower concentrations of KUECs and DBPs. Aside from ozonation, the Minus Approach avoids primary chemical-based coagulants, disinfectants, and advanced oxidation processes. The Minus Approach focuses on bank filtration, biofiltration, adsorption, and membranes to biologically and physically remove DBP precursors, KUECs, and pathogens; consequently, water purveyors can use ultraviolet light at key locations in conjunction with smaller dosages of secondary chemical disinfectants to minimize microbial regrowth in distribution systems. We describe how the Minus Approach contrasts with the conventional Plus Approach, integrates with artificial intelligence, and can ultimately improve the sustainability performance of water treatment. Finally, we consider barriers to adoption of the Minus Approach.

Alireza Farsad, Mariana Marcos-Hernandez, Shahnawaz Sinha, and Paul Westerhoff. 2023. “Sous Vide-Inspired Impregnation of Amorphous Titanium (Hydr)Oxide into Carbon Block Point-of-Use Filters for Arsenic Removal from Water.” Environmental Science & TechnologyEnvironmental Science & Technology, 57, 48, Pp. 20410-20420. Publisher's Version
2022
Naushita Sharma, Paul Westerhoff, and Chao Zeng. 2022. “Lithium occurrence in drinking water sources of the United States.” Chemosphere, 305, Pp. 135458.Abstract

Lithium (Li) is listed in the fifth Unregulated Contaminant Monitoring Rule (UCMR 5) because insufficient exposure data exists for lithium in drinking water. To help fill this data gap, lithium occurrence in source waters across the United States was assessed in 21 drinking water utilities. From the 369 samples collected from drinking water treatment plants (DWTPs), lithium ranged from 0.9 to 161 μg/L (median = 13.9 μg/L) in groundwater, and from <0.5 to 130 μg/L (median = 3.9 μg/L) in surface water. Lithium in 56% of the groundwater and 13% of the surface water samples were above non-regulatory Health-Based Screening Level (HBSL) of 10 μg/L. Sodium and lithium concentrations were strongly correlated: Kendall's τ > 0.6 (p < 0.001). As sodium is regularly monitored, this result shows that sodium can serve as an indicator to identify water sources at higher risk for elevated lithium. Lithium concentrations in the paired samples collected in source water and treated drinking water were almost identical showing lithium was not removed by conventional drinking water treatment processes. Additional sampling in wastewater effluents detected lithium at 0.8-98.2 μg/L (median = 9.9 μg/L), which suggests more research on impacts of lithium in direct and indirect potable reuse may be warranted, as the median was close to the HBSL. For comparison with the study samples collected from DWTPs, lithium concentrations from the national water quality portal (WQP) database were also investigated. Over 35,000 measurements were collected from waters that could potentially be used as drinking water sources (Cl < 250 mg/L). Data from WQP had comparable median lithium concentrations: 18 and 20 μg/L for surface water and groundwater, respectively. Overall, this study provides a comprehensive occurrence potential for lithium in US drinking water sources and can inform the data collection effort in UCMR 5.

2021
Chu C, Huang D, Gupta S, Weon S, Niu J, Stavitski E, Muhich C, and Kim JH. 8/30/2021. “Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis.” Nat Commun, 30, 12(1), Pp. 5179.Abstract

Single atom catalysts have been found to exhibit superior selectivity over nanoparticulate catalysts for catalytic reactions such as hydrogenation due to their single-site nature. However, improved selectively is often accompanied by loss of activity and slow kinetics. Here we demonstrate that neighboring Pd single atom catalysts retain the high selectivity merit of sparsely isolated single atom catalysts, while the cooperative interactions between neighboring atoms greatly enhance the activity for hydrogenation of carbon-halogen bonds. Experimental results and computational calculations suggest that neighboring Pd atoms work in synergy to lower the energy of key meta-stable reactions steps, i.e., initial water desorption and final hydrogenated product desorption. The placement of neighboring Pd atoms also contribute to nearly exclusive hydrogenation of carbon-chlorine bond without altering any other bonds in organohalogens. The promising hydrogenation performance achieved by neighboring single atoms sheds light on a new approach for manipulating the activity and selectivity of single atom catalysts that are increasingly studied in multiple applications.

J Kidd, P Westerhoff, and A Maynard. 4/22/2021. “Survey of Industrial Perceptions for the Use of Nanomaterials for In-Home Drinking Water Purification Devices.” NanoImpact, 22, 100320, Pp. 1-6. Publisher's VersionAbstract

As businesses, specifically technology developers and industrial suppliers, strive to meet growing demand for higher quality drinking water, the use of engineered nanomaterials in commercial point-of-use (POU) in-home water purification devices are becoming an increasingly important option. Anecdotally, some businesses appear wary of developing and marketing nanomaterial-enabled devices because of concerns that they will face onerous regulation and consumer pushback. However, little of substance is known about business perceptions of and attitudes toward the use of engineered nanomaterials in POU water purification devices, or how these compare with consumer perceptions. To address this knowledge-gap, we administered a 14-question survey among 65 participants from US-based industrial companies focused on drinking water purification. Our results indicate that the dominant concerns for businesses are costs and public perceptions associated with nanomaterial-enabled POU devices for drinking water purification. Cost-specific barriers include competition from more conventional technologies, and tensions between operational versus capital costs. 57% of respondents were concerned or very concerned that public perceptions will influence the long-term viability of nanomaterial-enabled POU devices for drinking water purification. 49% of respondents stated that government regulation of nanomaterials would be the preferred approach to ensure public safety, followed by the certification of POU devices (28%). When asked about specific nanomaterials and their potential use in POU devices for drinking water purification, respondents ranked carbon nanotubes as the nanomaterial with highest concern for environmental health and safety, followed by silver, titanium dioxide, zinc oxide, and copper. Respondents ranked nanoclays as the nanomaterial with highest likelihood for public acceptance, followed by silica, cerium oxide, titanium dioxide, and aluminum oxide

Baiyang Chen, Jingyi Jiang, Xin Yang, Xiangru Zhang, and Paul Westerhoff. 2021. “Roles and Knowledge Gaps of Point-of-Use Technologies for Mitigating Health Risks from Disinfection Byproducts in Tap Water: A Critical Review.” Water Res, 200, Pp. 117-265. Publisher's VersionAbstract
Due to rising concerns about water pollution and affordability, there is a rapidly-growing public acceptance and global market for a variety of point-of-use (POU) devices for domestic uses. However, the efficiencies and mechanisms of POU technologies for removing regulated and emerging disinfection byproducts (DBPs) are still not systematically known. To facilitate the development of this field, we summarized performance trends of four common technologies (i.e., boiling, adsorption, membrane filtration, and advanced oxidation) on mitigating preformed DBPs and identified knowledge gaps. The following highest priority knowledge gaps include: 1) data on DBP levels at the tap or cup in domestic applications; 2) certainty regarding the controls of DBPs by heating processes as DBPs may form and transform simultaneously; 3) standards to evaluate the performance of carbon-based materials on varying types of DBPs; 4) long-term information on the membrane performance in removing DBPs; 5) knowledge of DBPs' susceptibility toward advanced redox processes; 6) tools to monitor/predict the toxicity and diversity of DBPs formed in waters with varying precursors and when implementing different treatment technologies; and 7) social acceptance and regulatory frameworks of incorporating POU as a potential supplement to current centralized-treatment focused DBP control strategies. We conclude by identifying research needs necessary to assure POU systems protect the public against regulated and emerging DBPs.
Chung-Seop Lee, Sujin Guo, Hojung Rho, Juliana Levi, Sergi Garcia-Segura, Michael S Wong, Jorge Gardea-Torresdey, and Paul Westerhoff. 2021. “Unified Metallic Catalyst Aging Strategy and Implications for Water Treatment.” Environ Sci Technol.Abstract

Heterogeneous catalysis holds great promise for oxidizing or reducing a range of pollutants in water. A well-recognized, but understudied, barrier to implement catalytic treatment centers around fouling or aging over time of the catalyst surfaces. To better understand how to study catalyst fouling or aging, we selected a representative bimetallic catalyst (Pd-In supported on AlO), which holds promise to reduce nitrate to innocuous nitrogen gas byproducts upon hydrogen addition, and six model solutions (deionized water, sodium hypochlorite, sodium borohydride, acetic acid, sodium sulfide, and tap water). Our novel aging experimental apparatus permitted single passage of each model solution, separately, through a small packed-bed reactor containing replicate bimetallic catalyst "beds" that could be sacrificed weekly for off-line characterization to quantify impacts of fouling or aging. The composition of the model solutions led to the following gradual changes in surface composition, morphology, or catalytic reactivity: (i) formation of passivating species, (ii) decreased catalytic sites due to metal leaching under acid conditions or sulfide poisoning, (iii) dissolution and/or transformation of indium, (iv) formation of new catalytic sites by the introduction of an additional metallic element, and (v) oxidative etching. The model solution water chemistry captured a wide range of conditions likely to be encountered in potable or industrial water treatment. Aging-induced changes altered catalytic activity and provided insights into potential strategies to improve long-term catalyst operations for water treatment.

Paul Westerhoff, Pedro JJ Alvarez, Jaehong Kim, Qilin Li, Alessandro Alabastri, Naomi J Halas, Dino Villagran, Julie Zimmerman, and Michael S Wong. 2021. “Utilizing the broad electromagnetic spectrum and unique nanoscale properties for chemical-free water treatment.” Current Opinion in Chemical Engineering, 33. Publisher's VersionAbstract
Clean water is critical for drinking, industrial processes, and aquatic organisms. Existing water treatment and infrastructure are chemically intensive and based on nearly century-old technologies that fail to meet modern large and decentralized communities. The next-generation of water processes can transition from outdated technologies by utilizing nanomaterials to harness energy from across the electromagnetic spectrum, enabling electrified and solar-based technologies. The last decade was marked by tremendous improvements in nanomaterial design, synthesis, characterization, and assessment of material properties. Realizing the benefits of these advances requires placing greater attention on embedding nanomaterials onto and into surfaces within reactors and applying external energy sources. This will allow nanomaterial-based processes to replace Victorian-aged, chemical intensive water treatment technologies.
2020
Lauren N Pincus, Holly E Rudel, Predrag V Petrović, Srishti Gupta, Paul Westerhoff, Christopher L Muhich, and Julie B Zimmerman. 2020. “Exploring the Mechanisms of Selectivity for Environmentally Significant Oxo-Anion Removal during Water Treatment: A Review of Common Competing Oxo-Anions and Tools for Quantifying Selective Adsorption.” Environ Sci Technol, 54, 16, Pp. 9769-9790.Abstract

Development of novel adsorbents often neglects the competitive adsorption between co-occurring oxo-anions, overestimating realistic pollutant removal potentials, and overlooking the need to improve selectivity of materials. This critical review focuses on adsorptive competition between commonly co-occurring oxo-anions in water and mechanistic approaches for the design and development of selective adsorbents. Six "target" oxo-anion pollutants (arsenate, arsenite, selenate, selenite, chromate, and perchlorate) were selected for study. Five "competing" co-occurring oxo-anions (phosphate, sulfate, bicarbonate, silicate, and nitrate) were selected due to their potential to compete with target oxo-anions for sorption sites resulting in decreased removal of the target oxo-anions. First, a comprehensive review of competition between target and competitor oxo-anions to sorb on commonly used, nonselective, metal (hydr)oxide materials is presented, and the strength of competition between each target and competitive oxo-anion pair is classified. This is followed by a critical discussion of the different equations and models used to quantify selectivity. Next, four mechanisms that have been successfully utilized in the development of selective adsorbents are reviewed: variation in surface complexation, Lewis acid/base hardness, steric hindrance, and electrostatic interactions. For each mechanism, the oxo-anions, both target and competitors, are ranked in terms of adsorptive attraction and technologies that exploit this mechanism are reviewed. Third, given the significant effort to evaluate these systems empirically, the potential to use computational quantum techniques, such as density functional theory (DFT), for modeling and prediction is explored. Finally, areas within the field of selective adsorption requiring further research are detailed with guidance on priorities for screening and defining selective adsorbents.

Holly E Rudel, Mary Kate M Lane, Christopher L Muhich, and Julie B Zimmerman. 2020. “Toward Informed Design of Nanomaterials: A Mechanistic Analysis of Structure-Property-Function Relationships for Faceted Nanoscale Metal Oxides.” ACS Nano.Abstract
Nanoscale metal oxides (NMOs) have found wide-scale applicability in a variety of environmental fields, particularly catalysis, gas sensing, and sorption. Facet engineering, or controlled exposure of a particular crystal plane, has been established as an advantageous approach to enabling enhanced functionality of NMOs. However, the underlying mechanisms that give rise to this improved performance are often not systematically examined, leading to an insufficient understanding of NMO facet reactivity. This critical review details the unique electronic and structural characteristics of commonly studied NMO facets and further correlates these characteristics to the principal mechanisms that govern performance in various catalytic, gas sensing, and contaminant removal applications. General trends of facet-dependent behavior are established for each of the NMO compositions, and selected case studies for extensions of facet-dependent behavior, such as mixed metals, mixed-metal oxides, and mixed facets, are discussed. Key conclusions about facet reactivity, confounding variables that tend to obfuscate them, and opportunities to deepen structure-property-function understanding are detailed to encourage rational, informed design of NMOs for the intended application.